The Mars Global Surveyor Ka-band Link Experiment (MGS/KaBLE-II)

David Morabito, Stan Butman, and Shervin Shambayati
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California, 91109, USA

Abstract

The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-m diameter parabolic antenna on MGS and received by a beam-waveguide R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked (with a few exceptions) during the cruise phase of the mission from December 1996 to September 1997, and since then during the Mars orbital phase. Previously reported measurements have confirmed that Ka-band could increase data capacity by at least a factor of three (5 dB) compared to X-band.

This article presents updated carrier signal level (Pc/No) results for both X-band and Ka-band which include the additional data acquired during the previous year, under differing factors such as station elevation, weather, and solar elongation. In addition, the X-band (fx), Ka-band (fKa), and difference (fx-fKa/3.8) frequency data will also be presented. These results include residual scatters and Allan deviations at different time scales as a function of solar elongation angle as MGS went behind the sun in during its solar conjunction in May 1998.